Экономичный блок питания для антенного усилителя
Поэтому такие блоки питания часто перегреваются и выходят из строя даже при номинальном напряжении сети переменного тока. Постоянно горячий блок питания антенного усилителя не только потребляет от сети излишне большой ток, но и может стать причиной возникновения пожара, например, при повышенном напряжении сети. С учетом того, что антенный блок питания обычно работает круглосуточно и нередко остается без присмотра, был изготовлен самодельный блок питания, который обладает как высокой надежностью и безопасностью, так и малой потребляемой мощностью.
Устройство представляет собой модернизацию промышленного блока питания антенного усилителя. Модернизация выполнена с целью повышения надежности, экономичности и безопасности устройства. В качестве понижающего трансформатора Т1 использован импортный трансформатор промышленного изготовления с малым током холостого хода. Выпрямитель и стабилизатор напряжения +12 В выполнены на основе модуля от старого блока питания антенного усилителя, в котором сгорел понижающий трансформатор. На миниатюрную печатную плату блока питания были установлены недостающие детали, которые "китайцы" обычно считают лишними: конденсаторы С1-С4 и предохранительный резистор R2. Кроме того, был установлен конденсатор С5 с запасом по рабочему напряжению, а емкость конденсатора С6 увеличена с 0, 01 мкФ до 1 мкФ. Резистор R3 установлен сопротивлением 4, 7 кОм вместо 1, 5 кОм.
Микросхемы стабилизатора напряжения типа 78L12, выполненные в миниатюрном корпусе ТО-92, при питании антенных усилителей нередко выходят из строя. Чтобы устранить это явление, к корпусу микросхемы теплопроводным клеем приклеен небольшой теплоотвод размерами 15x10 мм. С этой же целью установлен резистор R2, который уменьшает рассеиваемую микросхемой мощность. Установка дросселей L1-L3 необязательна, но у автора при использовании этого блока питания совместно с внутренним компьютерным ТВ тюнером и индивидуальной внешней антенной удалось устранить небольшой муар при приеме сигналов на каналах метрового ТВ диапазона. Дроссель L1 смонтирован на печатной плате стабилизатора, а миниатюрные дроссели L2, L3 и конденсаторы С7, С8 - в корпусе антенного штекера. Разрывной резистор R1 снижает напряжение на первичной обмотке понижающего трансформатора, а также выполняет функцию предохранителя.
Детали и конструкция
В качестве трансформатора Т1 автор использовал готовый трансформатор EASTAR 430-035 от неисправного блока бесперебойного питания. Отличительная особенность этого трансформатора в малом потребляемом токе холостого хода, который не превышает 1, 3 мА при напряжении сети переменного тока 220 В, что соответствует потребляемой мощности менее 0, 3 Вт. Трансформатор без перегрева выдерживает длительное повышение напряжения сети до 300 В и кратковременное до 380 В. С таким трансформатором потребляемый блоком питания ток при отключенной нагрузке составляет 1, 8 мА, с нагрузкой 21...38 мА, что означает, что блок питания потребляет от сети мощность не более 1 Вт при подключенной нагрузке. Для сравнения, отечественный промышленный блок питания ИПС-5 для антенного усилителя потребляет от сети ток около 13 мА при работе с такой же нагрузкой аналогичные "китайские" - 20...40 мА. Если вы не располагаете подобными экономичными трансформаторами, то необходимый трансформатор с малым током холостого хода можно намотать самостоятельно.
Трансформатор, изготовленный на Ш-образном магнитопроводе с площадью центрального керна 1, 3 см2 содержит: первичная обмотка 12000 витков проводом ПЭЛ-1 диаметром 0, 05 мм, вторичная - 1000 витков обмоточным проводом диаметром 0, 16 мм. Если использован более крупный магнитопровод с площадью сечения 2, 25 см2, то первичная обмотка должна содержать 7100 витков проводом диаметром 0, 05...0, 07 мм, а вторичная - 700 витков проводом диаметром 0, 15...0, 23 мм. Оба варианта трансформаторов рассчитаны на непрерывную работу при напряжении сети до 320 В. Как показывает многолетняя практика, снабжение потребителей электроэнергии напряжением сети 280...320 В вместо 220 В может длиться многие часы, в то время как напряжение 380...420 В обычно присутствует в сети переменного тока не более нескольких минут. Резистор R1 использован импортный разрывной, можно применить отечественный невозгораемый Р1-7-2. Остальные резисторы типов МЛТ, С1-4, С2-23. Конденсатор С5 - импортный аналог К50-35, остальные - керамические К10-17, К10-50 или импортные аналоги. Выпрямительные диоды при токе нагрузки до 50 мА можно использовать любые из 1N4148, КД521, КД522, а при большем токе нагрузки любые из серий 1N4000-1N4007, КД209, КД243.
Микросхема маломощного стабилизатора 78L12 для повышения надежности установлена на небольшой теплоотвод. Можно использовать и более мощные микросхемы КР142ЕН5А, КР142ЕН5В, ххх-7805-х. Надежность стабилизатора в этом случае возрастет, а вот экономичность снизится. Дроссель L1 состоит из 7 витков сложенного вдвое монтажного провода, намотанного на цилиндре из феррита 400НН-1000НН от контура ПЧ старого отечественного транзисторного радиоприемника. Дроссели L1, L2 можно использовать малогабаритные промышленные индуктивностью 3...20 мкГн. Можно использовать и SMD-дроссели для поверхностного монтажа. Как уже говорилось, L2, L3, С7, С8 расположены в антенном штекере. Наличие этих дросселей, кроме защиты от обычных помех, также положительно сказывается на помехозащищенности антенной системы от мощного излучения сотовых телефонов. Некоторое время назад автор активно практиковал питание антенных усилителей непосредственно от теле- и радиоприемников. Как оказалось впоследствии, такой метод не лишен недостатков, поскольку приходилось или дорабатывать каждое подключаемое к антеннам устройство, и/или использовать специальные переходники, поэтому использование отдельного блока питания для антенного усилителя оказалось более практичным.
Автор: А.Л. Бутов, с. Курба, Ярославская обл., Радіоаматор №5, 2008г