Защита от аварийных режимов работы асинхронных электродвигателей
I. Введение.
Преобразование электрической энергии в механическую с помощью электродвигателей позволяет легко и экономически выгодно приводить в движение разнообразные рабочие механизмы: конвейеры, подъемно-транспортное оборудование, насосы, вентиляторы, компрессоры, металлорежущие станки, прокатные станы, швейное оборудование, пр.
Благодаря простоте конструкции, высокой надежности и невысокой стоимости асинхронный электродвигатель с короткозамкнутым ротором (далее по тексту АД), является наиболее распространенным электродвигателем. Свыше 85% всех электрических машин — это трехфазные асинхронные электродвигатели. По статистике сейчас в общественном производстве России находится не менее 50 млн. единиц трехфазных АД напряжением 0, 4 кВ.
АД обычно рассчитаны на срок службы 15–20 лет без капитального ремонта, при условии их правильной эксплуатации. Под правильной эксплуатацией АД понимается его работа в соответствии с номинальными параметрами, указанными в паспортных данных электродвигателя. Однако в реальной жизни имеет место значительное отступление от номинальных режимов эксплуатации. Это, в первую очередь, плохое качество питающего напряжения и нарушение правил технической эксплуатации: технологические перегрузки, условия окружающей среды (повышенные влажность, температура), снижение сопротивления изоляции, нарушение охлаждения. Последствием таких отклонений являются аварийные режимы работы АД. В результате аварий ежегодно выходят из строя до 10% применяемых электродвигателей. Например, 60% скважных электронасосных агрегатов ломаются чаще одного раза в году. Выход из строя АД приводит к тяжелым авариям и большому материальному ущербу, связанному с простоем технологических процессов, устранением последствий аварий и ремонтом вышедшего из строя электродвигателя. Ремонт электрической машины мощностью до 1 кВт обходится в 5–6$ США. Чтобы оценить, во что обойдется ремонт более мощной машины, надо просто умножить эту цифру на мощность двигателя. Помимо этого, работа на аварийных режимах ведет к повышенному энергопотреблению из сети, увеличению потребляемой реактивной мощности.
Совершенно очевидно, что применение надежной и эффективной защиты от аварийных режимов работы значительно сократит количество и частоту аварийных ситуаций и продлит срок службы АД, сократит расход электроэнергии и эксплутационные расходы. Но для того, чтобы выбрать эту защиту, необходимо знать, как и от чего необходимо защищать АД, а также специфику процессов, протекающих в нем в случае аварий.
II. Аварийные режимы АД.
Аварии АД. Аварии АД подразделяются на два основных типа: механические и электрические. Механические аварии – это: деформация или поломка вала ротора, ослабление крепления сердечника статора к станине, ослабление опрессовки сердечника ротора, выплавление баббита в подшипниках скольжения, разрушение сепаратора, кольца или шарика в подшипниках качения, поломка крыльчатки, отложение пыли и грязи в подвижных элементах, пр.
Причиной большинства механических аварий являются радиальные вибрации из-за асимметрии питающей сети (т. н. перекос фаз), механические перегрузки на валу электродвигателя, брак комплектующих элементов или допущенный при сборке. До 10% всех аварий АД имеют механическое происхождение. При этом 8% приходится на долю аварий, связанных с асимметрией фаз и только 2% на аварии, связанные с механическим перегрузом. Доля аварий, связанных с браком, мала, и поэтому ее можно не принимать во внимание в настоящем рассмотрении. Оценка вероятностей возникновения механических аварий отсутствует, большая их часть носит скрытый характер и выявляется только после соответствующих испытаний или разборки двигателя, однако постоянный контроль сетевого напряжения и нагрузки на валу АД позволяет в большинстве случаев свести эту вероятность к минимуму.
Электрические аварии АД, в свою очередь, делятся на три типа:
- сетевые аварии (аварии по напряжению), связанные с авариями в питающей электросети;
- токовые аварии, связанные с обрывом проводников в обмотках статора, ротора или кабеля, межвитковым и междуфазным замыканием обмоток, нарушением контактов и разрушением соединений, выполненных пайкой или сваркой; аварии, приводящие к пробою изоляции в результате нагрева, вызванного протеканием токов перегруза или короткого замыкания;
- аварии, связанные со снижением сопротивления изоляции вследствие ее старения, разрушения или увлажнения.
Сетевые аварии АД. Качество электро-энергии на территории РФ определяет ГОСТ 13109-97 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения». ГОСТ определяет соответствие стандартам целого ряда показателей, в первую очередь таких, как отклонения напряжения и частоты, коэффициент гармонической составляющей четного и нечетного порядка, коэффициенты обратной и нулевой последовательности напряжения, пр. Из-за аварий на подающих подстанциях, КЗ в распределительных сетях, коммутационных и грозовых возмущений, неравномерности распределения нагрузки по фазам, фактические значения ряда показателей больше допустимых, что ведет к аварийным режимам работы АД. По статистическим данным, до 80% аварий электродвигателя напрямую или косвенно связаны именно с авариями сетевого напряжения.
Анализ показателей качества электрической энергии (ПКЭ) относительно условий работы АД показывает, что, например, при уменьшении напряжения в сети возрастает ток статора, приводящий к интенсивному нагреву изоляции АД и сокращению срока службы вследствие ускоренного старения изоляции и ее пробоя, а повышение напряжения приводит к увеличению магнитного потока статора, тока намагничивания, нагреву сердечника (вплоть до «пожара» в стали), потребляемой из сети реактивной мощности, снижающей коэффициент мощности. В таблице 1 приведены обобщенные данные о влиянии основных показателей качества электрической энергии на режимы работы АД.
Следует отметить, что существует еще несколько типов сетевых аварий, которые происходят наиболее часто, но напрямую ГОСТом не регламентируются, т. к. являются крайними случаями проявления несимметричных режимов работы АД. Это обрыв одной из фаз, нарушение последовательности фаз и «слипание» фаз.
Обрыв фаз, как правило, связан с обрывом жилы питающего кабеля, сгоревшим предохранителем или отключением автомата в одной из линий или обрывом самой линии. При соединении обмоток двигателя звездой напряжение в двух фазах делится поровну и составляет половину линейного Uф= Uл/2, в третьей отсутствует. Такие режимы приводят к повышенному энергопотреблению из сети, перегреву обмоток статора. Поле из вращающегося превращается в пульсирующее, ток в оборванной фазе будет отсутствовать, в двух других увеличится на 50%. Двигатель не разворачивается даже на холостом ходу. В некоторых типах двигателей в случае, если обрыв произошел во время работы двигателя, на оборванной фазе генерируется т. н. напряжение «рекуперации», близкое по фазе и амплитуде сетевому, двигатель переходит в тормозной режим работы и, если его не отключить, сгорает в течение нескольких минут.
Аварийный режим «слипания» фаз происходит в случае обрыва одной из питающих фаз и замыкании ее со стороны двигателя на другую фазу. При этом одно и то же фазное напряжение подается на две фазы двигателя, на третьей остается в норме. При незначительной амплитудной несимметрии наблюдается значительная фазная несимметрия, приводящая к появлению значительных напряжений обратной последовательности, вызывающих перегрев двигателя и выход его из строя.
Нарушение закрепленной ГОСТом последовательности фаз А-В-С (В-С-А, С-А-В) на любую другую обуславливает реверсивный режим работы – вращение двигателя в другую сторону, что часто недопустимо по условиям технологического процесса, т. к. вызывает вращение приводного механизма в другую сторону и может привести, помимо аварии самого двигателя, к тяжелым, порой катастрофическим последствиям.
Постоянный контроль наличия и качества сетевого напряжения, включая гармонический анализ, вычисление действующих или средних значений напряжения до включения двигателя, контроль за его состоянием во время работы АД, в т. ч. за изменениями параметров фазных напряжений, вызванных режимами работы самого двигателя, позволит зачастую избежать причин возникновения аварийных режимов, предотвратить появление режимов короткого замыкания и токового перегруза.
Токовые аварии АД. Напряжение на зажимах АД и фазные токи, протекающие по его обмоткам, тесно взаимосвязаны, и любые, даже небольшие, изменения сетевого напряжения вызывают значительные изменения фазных токов (табл. 1). Для эффективной защиты АД необходимо измерять фазные токи как можно точнее. Согласно последним исследованиям, длительная работа двигателя с токовым перегрузом всего лишь на 5% от номинального сокращает срок его службы в 10 раз. В связи с сильной несинусоидальностью кривой тока, особенно во время пусков, в ней присутствует большое количество гармоник высшего порядка, оказывающих существенное влияние на величину действующего значения тока. Поэтому, если принимать решение о работе АД не по вычисленным дей-ствующим значениям тока, а по неким усредненным сигналам или, еще хуже, по пиковым значениям, это может привести к ложным выводам о наличии или отсутствии токового перегруза.
Различают два вида токового перегруза АД: симметричный и несимметричный. Симметричный токовый перегруз, как правило, связан с механическими перегрузками на валу двигателя. Их значение напрямую связано с режимами работы АД и тепловым перегрузом, о которых речь пойдет ниже.
Большая часть токовых аварий АД связана в первую очередь с повреждениями внутри самого двигателя, приводящими к несимметричному токовому перегрузу. Рассмотрим основные виды таких аварий.
Во всех случаях внутренних аварий электродвигателя наблюдается значительная асимметрия фазных токов, превышающая в несколько раз асимметрию напряжений. Поэтому постоянный контроль токов, соотношение токового перекоса с перекосом напряжений позволяют принимать достаточно достоверные выводы о наличии таких аварий и оперативно отключать двигатель.
Режимы работы АД. В зависимости от характера изменения нагрузки различают четыре основных номинальных режима работы АД: продолжительный, кратковременный, повторно-кратковременный и смешанный. Не будем подробно останавливаться на описании этих режимов, заметим только, что основной характеристикой нагрузочных режимов является тепловая характеристика электродвигателя. Работа АД всегда сопровождается его нагревом, что обусловлено происходящими в нем процессами и потерями энергии. Нормативный срок службы электродвигателя определяется, в конечном счете, допустимой температурой нагрева его изоляции. В современных двигателях применяется несколько классов изоляции, допустимая температура нагрева которых составляет для класса А – 105оС, Е – 120оС, В – 130оС, F – 155о C, H – 180о C, С свыше 180оС. Превышение допустимой температуры ведет к преждевременному разрушению изоляции и существенному сокращению срока службы двигателя.
В эксплуатации в основном приходится сталкиваться с режимами, не нормированными ГОСТами. Наиболее характерным является режим с быстроизменяющейся нагрузкой, когда двигатель периодически входит в режим перегрузки, возвращаясь затем на номинальный режим или опускаясь в режим работы с нагрузкой меньше номинальной. Если машина работает в продолжительном режиме, но с переменной нагрузкой (Р1, Р2, Р3…), имеет место неустановившийся тепловой процесс (рис. 4), т. к. в разные промежутки времени: t1, t2, t3, t4 и т. д. в ней возникают различные потери мощности, а, следовательно, различные тепловые потери. Для эффективного контроля количества тепла, накопленного двигателем в процессе работы, необходимо выяснить законы нагрева и охлаждения асинхронного электродвигателя.
Уравнение теплового баланса АД. В связи с трудностью проведения такого анализа принимаются следующие допущения: двигатель рассматривается как однородное тело, имеющее бесконечно большую теплопроводность и одинаковую температуру во всех своих точках. Теплоемкость двигателя и его коэффициент теплоотдачи не зависят от нагрузки на валу двигателя. Температура двигателя зависит не только от нагрузки, но и от температуры окружающей среды. Средняя температура t0 пропорциональна количеству тепла Q, накопленному двигателем
t0 = Q/ C, (1)
где С – теплоемкость двигателя. Потери тепла двигателем пропорциональны его температуре
dQ/ dt =—Aх t0=- Aх Q/ C, (3)
где A – теплоотдача двигателя. Если предположить, что до включения двигатель был холодным, основное тепловое уравнение при работе двигателя можно записать в виде
dQ/dt =—A х Q/C+I2 х R, (3)
где I2х R – мощность потерь, выделяемая в двигателе при протекании тока I по обмоткам с активным сопротивлением R.
Решение уравнения (3) при постоянном токе I
Q( t) = Qoх(1-е- tх A/ C), (4)
где Qо = I2х Rх C/ A, – установившееся количество тепла в двигателе при dQ/ dt = 0 .
Предельно допустимому току двигателя Iном соответствует предельно допустимое количество тепла
Qном = I2номх Rх C/ A (5)
и предельно допустимая температура (относительно окружающей среды)
t0ном = Qном/C= I2номхR/A (6)
При включении двигателя на постоянном токе в N раз превышающем Iном время выхода на предельно допустимое количество тепла Qном
TN = {lnN2-ln(N2-1)}/(A/C) (7)
Псевдотепловые математические модели электродвигателей положены в основу большинства защит АД от теплового перегруза. Постоянный расчет I2 с учетом скорости нагрева и остывания двигателя при как можно большей степени дискретизации измерений дают наиболее полную картину о количестве тепла, накопленного двигателем и опасного с точки зрения допустимого нагрева изоляции. При превышении допустимого нагрева для данного класса изоляции происходит так называемое ускоренное «старение» изоляции: снижается механическая прочность, появляется хрупкость, разломы и трещины, что приводит к снижению ее электрической прочности и пробою.
Снижение сопротивления изоляции.
В процессе эксплуатации АД его изоляция неизбежно «стареет». Основными причинами, вызывающими эти процессы, являются: нагревание обмоток рабочими и пусковыми токами, токами короткого замыкания и перегруза, теплотой от посторонних источников; динамическими усилиями, возникающими при взаимодействии проводников с током, коммутационными перенапряжениями. На состояние изоляции большое влияние оказывают также условия окружающей среды – температура и влажность воздуха, загрязненность и запыленность.
Состояние изоляции определяет степень безопасной эксплуатации электроустановок. Электродвигатель допускается эксплуатировать, если сопротивление его изоляции на корпус не менее 0, 5 мом. Вероятность пробоя изоляции возрастает на порядок, если сопротивление изоляции в два раза меньше допустимого. При снижении сопротивления изоляции высока вероятность появления такой тяжелейшей аварии АД, как пробой обмотки статора на корпус (короткое замыкание на корпус), опасной не только для самого электродвигателя, но и для обслуживающего персонала. По сети начинают протекать токи короткого замыкания, в 10–100 раз превышающие номинальные, а на корпус электроустановки может быть вынесено высокое напряжение, опасное для жизни человека. Не менее важным является непрерывный контроль сопротивления изоляции обмоток статора во время работы электродвигателя, т. к. диэлектрические свойства изоляции, измеренные до включения АД, могут внезапно измениться под воздействием электрического напряжения и температуры. Для этого используется измерение тока утечки на «землю» с помощью дифференциального трансформатора тока, реагирующего на появление дифференциального (разностного) тока выше некоторой уставки, заданной пользователем.
Методы защиты от аварийных режимов. Стремясь защитить двигатели от аварийных режимов, еще с середины прошлого века в энергетике стали применять различную релейную защиту: тепловую, токовую, температурную, фильтровую и комбинированную. Многолетний опыт эксплуатации АД показал, что большинство существующих защит не обеспечивают безаварийную работу АД. Так, например, тепловые реле рассчитывают на длительную перегрузку – 25–30% от номинальной. Но чаще всего они срабатывают при обрыве одной фазы при нагрузке 60% от номинальной. При меньшей нагрузке реле не срабатывает и АД продолжает работать на двух фазах и выходит из строя в результате перегрева изоляции обмоток. Правильный выбор защитного устройства – это важный фактор в обеспечении безопасной эксплуатации АД.
Приборы защиты АД от аварийных режимов можно разделить на несколько видов:
а) тепловые защитные устройства: тепловые реле, расцепители;
а) токозависимые защитные устройства: плавкие предохранители, автоматы;
в) термочувствительные защитные устройства: термисторы, термостаты;
г) защита от аварий в электросети: реле напряжения и контроля фаз, мониторы сети;
д) приборы МТЗ (максимальной токовой защиты), электронные токовые реле;
е) комбинированные устройства защиты.
Современные стандарты большинства стран мира, включая и Россию, предъявляют все более высокие требования к безопасной эксплуатации асинхронных электродвигателей. Высокие показатели надежности и долговечности АД возможны только при условии их эксплуатации при номинальных или близких к ним режимах, что можно обеспечить только установкой надлежащей защиты. Все из перечисленных в первой части статьи защитных устройств служат для быстрого, в течение доли секунды, определения характера и степени повреждения двигателя и локализации аварийного участка путем отключения его от остальной схемы электроснабжения. Но, вместе с тем, каждое из них имеет и целый ряд существенных недостатков, влияющих на качество их работы: одни отличаются неоправданной избирательностью, у других отсутствует отстройка от процесса пуска, третьи не реагируют на токи КЗ или перегруза и т. д. Для того, чтобы правильно выбрать защитное устройство, необходимо знать, как и от каких аварий защищает конкретное устройство, принцип действия и конструктивные особенности.
Токозависимые защитные устройства: предохранители, автоматические выключатели (автоматы).
Предохранители предназначены для защиты электрических сетей от перегрузок и коротких замыканий [1]. Конструктивно они состоят из корпуса из электроизоляционного материала и плавкой вставки, выбираемой из такого расчета, чтобы она плавилась прежде, чем температура двигателя достигнет опасных пределов в результате протекания токов перегруза или КЗ. Включаются предохранители последовательно защищаемой сети.
Основной характеристикой плавкой вставки является зависимость времени ее перегорания от тока (рис. 5). Здесь Iном – номинальный ток плавкой вставки, при котором она работает длительно, не нагреваясь выше допустимой температуры; Imin – наименьший ток, расплавляющий вставку в течение длительного времени (1–2 ч); I10 – ток, при котором расплавление вставки и отключение сети происходит через 10 с после установления тока. Токи плавкой вставки связаны соотношением
Iном = I10/2, 5 (1)
При графическом изображении токо-временной характеристики плавких предохранителей по оси абсцисс иногда откладывают не абсолютное значение тока, а его кратность относительно номинального (рис. 6).
При защите короткозамкнутых АД следует учитывать, что пусковой ток двигателя в 5–7 раз больше номинального, а время пуска электродвигателя равняется нескольким секундам [2]. Номинальный ток плавкой вставки с учетом пускового тока определяется по формуле:
Iном = kп In/а (2)
где kп – кратность пускового тока электродвигателя по отношению к номинальному; In – номинальный ток электродвигателя, А; а – коэффициент, зависящий от условий пуска электродвигателя.
Для двигателей с нормальными условиями пуска (редкие пуски и временем разгона 5–10 с) а = 2, 5; для двигателей с тяжелыми условиями пуска (частые пуски и большая длительность разгона) а = 1, 6-2.
Как следует из формулы (2), предохранители способны защитить АД только от токов короткого замыкания, в 10–100 раз превышающие номинальные токи. Токи же перегруза или другие токовые аварии они будут воспринимать как пусковые токи, не реагируя на них. В лучшем случае они способны отключить электродвигатель только через несколько минут, что может привести к перегреву обмоток и к аварии АД. Поэтому, для защиты электродвигателей от короткого замыкания в нем самом или в подводящем кабеле используют предохранители типа аМ с более пологой токо-временной характеристикой [2]. Они способны выдерживать, не расплавляясь, токи, в 5–10 раз превышающие номинальные в течение 10 с, что вполне достаточно для запуска двигателя. Для защиты от перегрузки необходимо использовать другие устройства.
Предохранители абсолютно не способны защищать от аварий, связанных с авариями сетевого напряжения, от аварий, связанных с нарушением режимов работы АД или тепловым перегрузом, а также от режима холостого хода двигателя. В то же время при однофазном КЗ, а иногда при сильном перекосе фаз они, как правило, отключают только одну фазу, что приводит к аварийному режиму работы на двух фазах.
Автоматические выключатели (автоматы) предназначены для включения и отключения асинхронных электродвигателей и других приемников электроэнергии, а также для защиты их от токов перегрузки и короткого замыкания [3].
Автоматы совмещают в себе функцию рубильника, предохранителя и теплового реле, обеспечивают одновременное отключение всех трех фаз в случае возникновения аварийных ситуаций. В рабочем режиме включение и отключение производится вручную; в аварийном режиме он отключается автоматически электромагнитным или тепловым расцепителем.
Важной составной частью автомата является расцепитель, который контролирует заданный параметр защищаемой сети и воздействует на расцепляющее устройство, отключающее автомат. Наибольшее распространение получили расцепители следующих типов:
- электромагнитные, для защиты от токов короткого замыкания;
- тепловые для защиты от перегрузок;
- комбинированные;
Электромагнитный расцепитель состоит из катушки с подвижным сердечником и возвратной пружины. При протекании по катушке тока короткого замыкания сердечник мгновенно втягивается и воздействует на отключающую рейку механизма свободного расцепления.
Тепловой расцепитель представляет собой биметаллическую пластину, соединенную последовательно с контактом. При нагревании ее током перегрузки она изгибается и воздействует на отключающую рейку механизма свободного расцепления с обратно-зависимой выдержкой времени.
Выбор автоматических выключателей производится по номинальному току, характеристике срабатывания, отключающей способности, условиям монтажа и эксплуатации. Правильный выбор характеристики автоматического выключателя является залогом его своевременного срабатывания.
В соответствии со стандартами IEC 898 (стандарт международной электротехнической комиссии) и EN 60898 (европейская норма) по характеристикам срабатывания выключатели бывают трех типов: B, C, D .
Здесь t – время срабатывания электромагнитного расцепителя, сек/мин; K = I/Iн – кратность тока к номинальному значению.
Тип B – величина тока срабатывания магнитного расцепителя равна Iв = KIн, при K = 3 – 6. Бытовое применение, где ток нагрузки невысокий и ток КЗ может попасть в зону работы теплового, а не электромагнитного расцепителя.
Тип C – величина тока срабатывания магнитного расцепителя Iс = KIн, при
K = 5 – 10. Бытовое и промышленное применение: для двигателей со временем пуска до 1 сек, нагрузки с малыми индуктивными токами (холодильных машин и кондиционеров).
Тип D – величина тока срабатывания магнитного расцепителя Id = KIн более 10Iн. Применение для мощных двигателей с затяжным временем пуска.
Для выбора автоматического выключателя по отключающей способности необходимо выполнить расчет ожидаемого тока короткого замыкания. Как показывает практика, для большинства типа сетей его значение не превышает 4, 5 кА.
Тепловые расцепители, используемые в автоматических выключателях, чувствительны к нагреву от посторонних источников. В практике нередко случается, что расцепитель промежуточного полюса при номинальном режиме отключается только из-за нагрева соседних полюсов. Это приводит к ограничению области его работы и к коррекции номинального тока с учетом графика. Нагрузочная характеристика большинства автоматических выключателей зависит от температуры окружающей среды: при ее снижении коэффициент нагрузки увеличивается, при повышении – падает. Это ограничивает возможность их использования в условиях жесткого температурного режима эксплуатации, особенно в горячих цехах или в условиях открытого воздуха.
Для обеспечения контроля за другими видами аварий автоматические выключатели снабжают целым рядом дополнительных устройств.
Расцепитель минимального напряжения отключает автомат при недопустимом снижении напряжения, ниже 0, 7 Uн, расцепитель нулевого напряжения срабатывает при напряжении в сети менее 0, 35 Uн, где Uн – номинальное напряжение в сети.
Независимый расцепитель предназначен для дистанционного отключения автоматического выключателя, электромагнитный привод – для дистанционного оперирования выключателем. Расцепитель токов утечки на землю обеспечивает непрерывный контроль за состоянием изоляции установки, защиту от опасности возгорания или взрыва.
Специально для защиты электродвигателей были разработаны так называемые мотор-автоматы. В отличие от стандартного автомата, мотор-атоматы имеют целый ряд особенностей:
- номинальный ток электромагнитного расцепителя составляет 12–14 Iнр, что соответствует режиму работы на индуктивную нагрузку (AC-3);
- высокую электродинамическую стойкость – до 100 кА;
- рычаг или кнопки управления электроприводом на корпусе;
- встроенные или навесные быстромонтируемые дополнительные контакты, срабатывающие при перегрузках или КЗ.
Разнесение функций защитных устройств на несколько независимых устройств создает массу неудобств при монтаже и эксплуатации. Каждое из них не обладает универсальностью и подходит только к конкретному автоматическому выключателю. Поэтому перед разработчиками остро встала проблема создания универсального устройства.
Последние поколения автоматических выключателей снабжены т. н. электронными расцепителями, осуществляющими комплексную защиту электродвигателя и объединяющими в одном устройстве функции всех вышеперечисленных расцепителей [4]. Они выполнены на базе микропроцессорной техники, гарантируют высокую точность срабатывания, надежность и устойчивость к температурным режимам. Электропитание, необходимое для правильной работы, обеспечивается непосредственно трансформаторами тока расцепителя.
Защитные расцепители состоят из трех или четырех трансформаторов тока (в зависимости от типа сети), электронного блока и механизма расцепления, который воздействует непосредственно на механизм выключателя. Для управления магнитным пускателем дополнительно потребуется вспомогательный блок управления, позволяющий управлять контактором в случае аварии (за исключением короткого замыкания).