Инжекционный лазер
Инжекционнный лазер представляет собой полупроводниковый двухэлектродный прибор с p-n-переходом (поэтому часто как равноправный используется термин "лазерный диод"), в котором генерация когерентного излучения связана с инжекцией носителей заряда при протекании прямого тока через p-n-переход.
Разновидности инжекционных лазеров. Рассмотренные теоретические положения предопределяют пути совершенствования простейшей структуры лазера. Обследованы и реализованы варианты расположения слоев по толщине кристалла. В гомогенном полупроводнике p-n-переход как средство электронного ограничения весьма несовершенен: при высоких уровнях накачки происходит бесполезная инжекция электронов влево (из-за падения коэффициента инжекции), ограничение справа достигается лишь естественным убыванием концентрации введенных дырок по закону
exp(-х/L). Границы, определяющие "электронную" и "оптическую" толщины активной области W и Wопт, не определенны и меняются от режима накачки. Все эти несовершенства, проявляющиеся в конечном счете в высоком значении плотности порогового тока, предопределили бесперспективность лазеров на однородных полупроводниках.
Широкое промышленное распространение получили только гетеролазеры, общими особенностями которых являются односторонняя инжекция, четко выраженный волноводный эффект, возможность суперинжекции.
В односторонней гетероструктуре (ОГС) электронное ограничение слева идеально, а справа такое же, как и в лазере на гомогенном полупроводнике (рис. 4, a); преимущество ОГС перед другими гетероструктурами состоит в простоте технологии.
Поистине классической стала двойная (двусторонняя) гетероструктура (ДГС), в которой сверхтонкая активная область "зажата" между двумя гетерограницами (рис. 4, б): именно она позволяет получать малые пороговые плотности тока и значительные выходные мощности. Четырех и пятислойная структуры, являющиеся усовершенствованной ДГС, позволяют при очень тонкой области накачки W иметь толщину волновода Wопт, оптимальную с точки зрения модовых соотношений. В пятислойных GaAlAs - структурах удается получать Jпор=102 A/см2 и
Рвых d 0, 1 Вт. Отметим, что технологические соображения требуют создания ряда переходных слоев, поэтому реальные лазерные структуры значительно сложнее, чем физические модели.