Индуктивные элементы
Индуктивные элементы делятся на катушки индуктивности и трансформаторы.
По назначению катушки индуктивности можно разделить на четыре группы:
а) катушки контуров,
б) катушки связи,
в) дроссели высокой частоты и
г) дроссели низкой частоты.
По конструктивному признаку катушки могут быть разделены на однослойные и многослойные; цилиндрические, спиральные и тороидальные; экранированные и неэкранированные; катушки без сердечников и катушки с сердечниками и др.
Катушки индуктивности характеризуются следующими основными параметрами: индуктивностью и точностью, добротностью, собственной емкостью и стабильностью.
Однослойные катушки применяются на частотах выше 1500 кГц. Намотка может быть сплошная и с принудительным шагом. Однослойные катушки с принудительным шагом отличаются высокой добротностью (Q=150...400) и стабильностью;
применяются в основном в контурах коротких (KB) и ультракоротких (УКВ) волн [47]. Высокостабильные катушки, применяемые в контурах гетеродинов на KB и УКВ, наматываются при незначительном натяжении проводом, нагретым до 80...120 С.
Для катушек с индуктивностью выше 15...20 мкГн применяется сплошная однослойная намотка. Целесообразность перехода на сплошную намотку определяется диаметром катушки. Ориентировочные значения индуктивности, при которых целесообразен переход на сплошную намотку:
Диаметр каркаса (в мм) 6 10 15 20 25
Индуктивность (в мкГн) 1, 8 4 10 20 30
Катушки со сплошной намоткой также отличаются высокой добротностью и широко используются в контурах на коротких, промежуточных и средних волнах, ее ли требуется индуктивность не выше 200...500 мкГн. Целесообразное гь перехода на многослойную намотку определяется диаметром катушки. Ориентировочные значения индуктивности, при которых целесообразен переход на многослойную намотку:
Диаметр каркаса (в мм) 10 15 20 25 30
Индуктивность (в мкГн) 30 50 100 200 500
Индуктивность однослойной катушки рассчитывается по формуле:
L=0, 01DN2/(l/D+0.44), где L — индуктивность (в мкГн), D — диаметр катушки (в см), 1 — длина намотки (в см), N — число витков.
Добротность однослойных катушек определяется в основном диаметром провода и шагом намотки (расстоянием между витками) х. Установлено , что на высоких частотах оптимальное значение диаметра намоточного провода определяется из выражения: d=0, 707x.
Многослойные катушки разделяются на простые и сложные. Примерами простых намоток являются рядовая многослойная намотка и намотка "кучей" (или в навал). Не секционированные многослойные катушки с простыми намотками отличаются пониженной добротностью и стабильностью, большой собственной емкостью, требуют применения каркасов. Индуктивность многослойной катушки рассчитывается по формуле: L=0, 08(DN)2/(3D+9l+10t), где L — индуктивность катушки, мкГн; D — средний диаметр намотки, см; l— длина намотки, см; t — толщина катушки, см; N — число витков.
Если задана индуктивность и нужно рассчитать число витков, то следует задать величины D, l и t и подсчитать необходимое число витков. После этого следует произвести проверку толщины катушки по формуле: t=zNd2/l, где d — диаметр провода с изоляцией (в мм), z=1, 05...1, 3 — коэффициент не плотности намотки при d=1...0, 08 соответственно.
Секционированные катушки индуктивности характеризуются достаточно высокой добротностью, пониженной собственной емкостью, меньшим наружным диаметром и допускают в небольших пределах регулировку индуктивности путем смещения секций. Они применяются как в качестве контурных в контурах длинных и средних волн, так и в качестве дросселей высокой частоты. Каждая секция представляет собой обычную многослойную катушку с небольшим числом витков. Число секций может быть от двух до восьми, иногда даже больше. Расчет секционированных катушек сводится к расчету индуктивности одной секции. Индуктивность секционированной катушки, состоящей из п секций: L= Lc[n+2k(n-1)], где Lc — индуктивность секции, k — коэффициент связи между смежными секциями (k=0.3 при расстоянии между секциями, равном половине ширины секции, которая равна среднему радиусу катушки).
Собственная емкость катушки понижает добротность и стабильность настройки контуров. В диапазонных контурах эта емкость уменьшает коэффициент перекрытия диапазона. Величина собственной емкости определяется типом намотки и размерами катушки. Наименьшая собственная емкость (несколько пФ) у однослойных катушек, намотанных с принудительным шагом. Многослойные катушки обладают большей емкостью, величина которой зависит от способа намотки. Так, емкость катушек с универсальной намоткой составляет 5...25 пФ, а с рядовой многослойной намоткой может быть выше 50 пф.
Дросселем высокой частоты называют катушки индуктивности, используемые в цепях питания в качестве фильтрующих элементов. Индуктивность дросселя должна быть достаточно большой, а собственная емкость — малой. Конструктивно дроссели высокой частоты выполняются в виде однослойных или многослойных катушек. Для дросселей длинных и средних волн применяется секционированная многослойная намотка. Дроссели для коротких волн и для метровых волн обычно имеют однослойную намотку — сплошную или с принудительным шагом. В качестве каркаса часто используются керамические стержни от резисторов. Расчет числа витков дросселя производится так же, как и расчет числа витков катушек индуктивности.
В катушках с большой индуктивностью применяются сердечники из ферромагнитных материалов. Индуктивность катушки с замкнутым стальным сердечником L=0, 0126mSN2/lc, [мкГн], где m — магнитная проницаемость материала (для электротехнических сталей находится в диапазоне 200... 500), S — сечение сердечника (в см2), N — число витков катушки, 1„ — средняя длина магнитного пути, см (например, для круглого сердечника — длина его средней окружности).